Abstract
A nickel-catalyzed cross-coupling reaction between aryltitanium(IV) alkoxides and
various functionalized aryl halides is described. The reaction requires Ni(acac)2 (0.5 mol%), a phosphine or an N-heterocyclic carbene ligand (NHC ligand; 0.5-1.0
mol%) and proceeds at 25 °C within 1-24 hours.
Key words
organotitanium reagents - cross-coupling - nickel
References and Notes
<A NAME="RG14607ST-1A">1a </A>
Metal-Catalyzed Cross-Coupling Reactions
2nd ed.:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RG14607ST-1B">1b </A>
Tsuji J.
Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis
Wiley;
Chichester:
1995.
<A NAME="RG14607ST-1C">1c </A>
Cross-Coupling Reactions: A Practical Guide, In Top. Curr. Chem.
Vol. 219:
Miyaura N.
Springer-Verlag;
Berlin-Heidelberg:
2002.
<A NAME="RG14607ST-2A">2a </A>
Duthaler R.
Hafner A. In Transition Metals for Organic Synthesis
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
p.447
<A NAME="RG14607ST-2B">2b </A>
Reetz M.
Organotitanium Reagents in Organic Synthesis
Springer Verlag;
Berlin:
1986.
<A NAME="RG14607ST-2C">2c </A>
Weidmann B.
Seebach D.
Helv. Chim. Acta
1980,
63:
2451
<A NAME="RG14607ST-3A">3a </A>
Sato F.
Urabe H.
Okamoto S.
Chem. Rev.
2000,
100:
2835
<A NAME="RG14607ST-3B">3b </A>
Sato F.
Urabe H. In Titanium and Zirconium in Organic Synthesis
Marek I.
Wiley-VCH;
Weinheim:
2002.
p.319
<A NAME="RG14607ST-3C">3c </A>
Kulinkovich O.
de Meijere A.
Chem. Rev.
2002,
100:
2789
<A NAME="RG14607ST-4A">4a </A>
Weidmann B.
Widler L.
Olivero A.
Maycock C.
Seebach D.
Helv. Chim. Acta
1981,
64:
357
<A NAME="RG14607ST-4B">4b </A>
Reetz M.
Top. Curr. Chem.
1982,
106:
1
<A NAME="RG14607ST-5A">5a </A>
Tsuji T.
Ishii T.
J. Organomet. Chem.
1992,
425:
41
<A NAME="RG14607ST-5B">5b </A>
Fleming S.
Kabara K.
Nickisch K.
Neh H.
Westermann J.
Tetrahedron Lett.
1994,
35:
6075
<A NAME="RG14607ST-5C">5c </A>
Arai M.
Lipshutz B.
Nakamura E.
Tetrahedron
1992,
48:
5709
<A NAME="RG14607ST-5D">5d </A>
Bumagin N.
Ponomaryov A.
Beletskaya I.
J. Organomet. Chem.
1985,
291:
129
<A NAME="RG14607ST-5E">5e </A>
Han J.
Tokunaga N.
Hayashi T.
Synlett
2002,
871
<A NAME="RG14607ST-5F">5f </A>
Obora Y.
Moriya H.
Tokunaga M.
Tsuji Y.
Chem. Commun.
2003,
2820
<A NAME="RG14607ST-6A">6a </A>
Arduengo A.
Krafczyk R.
Schmutzler R.
Craig H.
Goerlich J.
Marshall W.
Unverzagt M.
Tetrahedron
1999,
55:
14523
<A NAME="RG14607ST-6B">6b </A>
Scott N.
Nolan S.
Eur. J. Inorg. Chem.
2005,
1815
<A NAME="RG14607ST-6C">6c </A>
Marion N.
Navarro O.
Mei J.
Stevens E.
Scott N.
Nolan S.
J. Am. Chem. Soc.
2006,
128:
4101
<A NAME="RG14607ST-6D">6d </A>
Organ M.
Avola S.
Dubovyk I.
Hadei N.
Kantchev E.
O’Brien C.
Valente C.
Chem. Eur. J.
2006,
12:
4749
<A NAME="RG14607ST-6E">6e </A>
The NHC ligand itself is generated by deprotonation with the organometallic reagent.
See also references above.
<A NAME="RG14607ST-7">7 </A>
Wada M.
Higashizaki S.
Chem. Commun.
1984,
482
<A NAME="RG14607ST-8">8 </A> Polar solvents such as NMP, NEP (N -ethyl-2-pyrroli-dinone), DMPU or DME were not effective as co-solvents, as it is
known in other cross-coupling reactions. See also:
Gavryushin A.
Kofink C.
Manolikakes G.
Knochel P.
Org. Lett.
2005,
7:
4871
<A NAME="RG14607ST-9">9 </A>
Krasovskiy A.
Knochel P.
Angew. Chem. Int. Ed.
2004,
43:
3333
<A NAME="RG14607ST-10">10 </A>
Yunusov S.
Sidakin G.
Zh. Obshch. Khim.
1955,
25:
2009
<A NAME="RG14607ST-11">11 </A>
Brittain J.
Jones R.
Arques J.
Saliente T.
Synth. Commun.
1982,
12:
231
<A NAME="RG14607ST-12">12 </A>
Nguyen T.
Negishi E.
Tetrahedron Lett.
1991,
32:
5903
<A NAME="RG14607ST-13A">13a </A>
Negishi E.
Valente L.
Kobayashi M.
J. Am. Chem. Soc.
1980,
102:
3298
<A NAME="RG14607ST-13B">13b </A>
Negishi E.
Acc. Chem. Res.
1982,
15:
340
<A NAME="RG14607ST-13C">13c </A>
Zeng X.
Quian M.
Hu Q.
Negishi E.
Angew. Chem. Int. Ed.
2004,
43:
2259
<A NAME="RG14607ST-13D">13d </A>
Quian M.
Huang Z.
Negishi E.
Org. Lett.
2004,
6:
1531
<A NAME="RG14607ST-14">14 </A>
Not using NMP leads to heterogeneous reactions and lower yields.
<A NAME="RG14607ST-15">15 </A>
Typical Procedure for the Cross-Coupling Reaction; Preparation of Biphenyl-4-carboxylic
Acid Ethyl Ester (
3a) : A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a
septum was charged with a Ti(OEt)4 solution (1.0 mL, 1.5 M in THF). First phenyl-magnesium chloride (0.84 mL, 1.79 M in THF) was added dropwise at 0 °C, then Ni(acac)2 (1.3 mg, 0.005 mmol), ligand 4 (2.1 mg, 0.005 mmol) and 4-bromobenzoic acid ethyl ester (2a ; 229 mg, 1.00 mmol) were added. The reaction mixture was stirred for 3 h at r.t.
Then the mixture was quenched with a sat. NH4 Cl solution and extracted with Et2 O. Column chromatography (pentane-Et2 O, 9:1) of the crude residue yielded 3a as colorless solid (215 mg, 95%).